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Summary
Driven by a need to explore and develop propulsion systems that exceeded current computing
capabilities, NASA Glenn embarked on a novel strategy leading to the development of an
architecture that enables propulsion simulations never thought possible before. Full engine 3
Dimensional Computational Fluid Dynamic propulsion system simulations were deemed
impossible due to the impracticality of the hardware and software computing systems required.
However, with a software paradigm shift and an embracing of parallel and distributed
processing, an architecture was designed to meet the needs of future propulsion system
modeling. The author suggests that the architecture designed at the NASA Glenn Research
Center for propulsion system modeling has potential for impacting the direction of development
of affordable weapons systems currently under consideration by the Applied Vehicle Technology
Panel (AVT).

This paper discusses the salient features of the NPSS Architecture including its interface layer,
object layer, implementation for accessing legacy codes, numerical zooming infrastructure and
its computing layer. The computing layer focuses on the use and deployment of these
propulsion simulations on parallel and distributed computing platforms which has been the focus
of NASA Ames. Additional features of the object oriented architecture that support Multi-
Disciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects
will be discussed. Included will be a discussion of the successes, challenges and benefits of
implementing this architecture.

Numerical Propulsion System Simulation
Today, propulsion engineers use what are called preliminary and conceptual design codes to
numerically create and analyze commercial, military and rocket propulsion systems. Most of
these computer codes were written in the 60's and 70's and many, if not all, are written in
FORTRAN. For some time now, analyzing and building propulsion systems has been
prohibitively expensive due largely to the iterative nature of designing, analyzing and testing of
hardware before a final configuration is achieved. In order to reduce cost, risk, time to market,
expand capability, assure accuracy to mission requirements and increase confidence in designs,
innovative ways have to be found to numerically create propulsion systems that bring the design
closer to the final configuration before hardware is ever built and tested.

The NASA Glenn led Numerical Propulsion System Simulation (NPSS) is a project funded by
and partnered with NASA Ames targeted at impacting this need. NPSS set out to advance the
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state of the art in propulsion modeling as well as create a common architecture to numerically
model propulsion systems. NASA Ames embarked on developing the parallel and distributed
computing platforms needed by such simulations.

The current state of the art in propulsion modeling centers on the use of 0 Dimensional
preliminary and conceptual design methodology. However, NPSS wanted to look beyond the
current ways propulsion systems were designed and created. NPSS dreamed of a system that
allowed an engineer the flexibility to numerically assemble an engine using 3-Dimensional
components or any combination of 0,1,2,3 Dimensional component codes. The "plug-n-play" or
"substitute at will" concept captures the essence of this goal. Figure 1 embodies this concept.

Numerical Zooming in the NPSS
Plug 'n Play Environment
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NPSS ] ]
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NPSS V1 (2nd Q FY 00)- Baseline 0-D Model

Figure 1.

With this in mind, an object-oriented architecture was designed and laid out to fulfill this vision.
The NPSS object-oriented architecture allows an engineer to numerically assemble a propulsion
system comprised of differing dimensionality component codes (Numerical Zooming), different
disciplines (MD coupling), all irrespective of the computing platforms these codes execute on
while producing results on cost effective computing platforms overnight. The first deliverable
within the NPSS Architecture is NPSS V1.0. Although V1.0 preserves the traditional
preliminary and conceptual design methodology for designing engines that is the state of the art
today, it was created to move the state of the art in propulsion system modeling into the future.
As such, NPSS V1.0 is an object oriented preliminary and conceptual design code used by
aerospace engineers to predict and analyze the aero-thermodynamic behavior of commercial jet
aircraft, military, and rocket engines. However, it is more than this, as it has designed into it the
infrastructure supporting Numerical Zooming to higher dimension codes and coupling to
differing discipline analysis. As the state of the art in propulsion modeling moves into the
future away from a strict adherence to 0 Dimensional analysis towards a mixture of 0,1,2,3
Dimensional codes, the same NPSS' architecture exists to support this maturity in modeling.
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The NPSS architecture is pictorially represented by figure 2. The architecture is open and
extensible. To this end, the architecture exploits the capabilities of object-oriented programming
(inheritance, polymorphism, and encapsulation) as well as modern object-oriented concepts
including frameworks, component objects, and distributed object standards.

NPSS Object Oriented Architecture
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Figure 2.

Design Philosophy
The NPSS Architecture was designed following a hybrid object oriented design philosophy. The
early work by 1. Jacobson and G. Booch were followed where appropriate and extended by
experiences known within the NASA culture. An overall philosophy for NPSS was to view the
architecture from a leap-frogging approach, purchase from the commercial sector what you
could, minimize commercial licensing and build from scratch that what you must. Whatever
benefited the project from new and innovative hardware or software was to be incorporated into
the architecture as quickly as possible without a huge development effort and without disturbing
the quality and stability of the current system. To make the advances in propulsion design, time
could not be wasted on re-checking answers, re-writing code and re-designing entire sections of
the architecture. This was the fundamental reason the object-oriented paradigm was chosen.
Beliefs then, and proven now, demonstrate that the object oriented design methodology was
correct.

NPSS Architecture
Referring to figure 2. above, there are fundamentally three main areas of the architecture. These
are: the Interface Layer, Object Layer and the Computing Layer. Within the Interface Layer, a
command and a visual interface exist. The Object Layer contains the fundamental engineering
specifics for propulsion systems and the appropriate support objects needed by propulsion
systems such as access to geometry and legacy FORTRAN codes used by many, if not all,
propulsion companies. Last but not least, the Computing Layer exists on which to deploy
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propulsion system simulations. This last layer, Computing, is and has been the most dynamic
over the last ten years and continues to change about every 18-24 months.

Interface Layer
From the beginning of the architectures' development, the priorities were to get the engineering
and physics right and then add a visual interface later. Given this, the main interface to NPSS
has been a command line. However, do not assume that this is a simplistic interface to NPSS.
On the contrary, the command line and its suite of syntax are quite elegant, mature and
sophisticated. Two versions of the command interface exist:

Batch: npss [-options]filel file2...
Interactive: npss [-i] [-trace] [-options] file 1 file2...

Contained within the filel is the actual NPSS syntax that defines the propulsion system to be
designed and analyzed. The language used here is C++ like but not pure C++. Early exposure to
pure C++ as the syntax changed the direction to create a C++ like syntax. This change allowed
an easier and early adoption of NPSS. While most engineers wanted a FORTRAN language,
many of the concepts envisioned fell victim to FORTRAN's language syntax. The syntax itself
has many features of a programming language and indeed, a feature we've added is an NPSS
syntax to C++ converter. This feature allows code first developed with the syntax to be later
compiled as part of an executable library available for later use. A sample of the syntax looks
like the following.

Model BWB {
Element FlightConditions AMBO {... }
Element Inlet Inlet {... }
Element Fan Fan {... }
Element Compressor Compressor .. }
Element Combustor Combustor{ ... }
Element Turbine Turbine t ... I
Element Nozzle Nozzle(... I
linkPorts ("FlightConditions.Outlet", "INLET.F1_I", "FLO" ........

I
The syntax has programming constructs such as: The ability to declare new variables that are
combinations of other variables, comments, If-then-else, do while's, arithmetic functions: *,/, +,

-, exponentiation, logicals, >, <, = ...... etc.

Recently, a visual front end to NPSS has been under development. The visual front end
communicates with the NPSS system through the command interface as just described. An early
view of this interface is included as shown in figure 3. Visually speaking, NPSS provides the
ability to assemble and connect a propulsion system together and then execute this simulation as
well as store or archive it as necessary. It is the author's belief that in order to maintain
flexibility, maturity of NPSS and advancement to its capabilities, a visual interface and a
command interface must always exist separately. Once the visual interface becomes part of a
code, a violation to the integrity of the original intent of the code has occurred and can never be
recovered. Even as future interfaces emerge such as voice activation, screen sensing and even
optical movement or heads up displays, in order to break off the current visual interface and
make use of the futuristic interfaces, a command interface will need to exist.
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Figure 3.

Object Layer
The development of the object layer has garnered the most attention and development. This is
where all the propulsion objects exist both for airbreathing and rocket engines. Additionally, this
is where all the infrastructure objects are for moving information from one element to another,
for accessing object codes (FORTRAN, C, C++,...) through CORBA on other machines and
other address spaces. The numerical zooming, code coupling and security infrastructure also
exists here as well.

Propulsion and Rocket Objects
NASA Glenn has populated this layer with airbreathing, rocket and to a lesser extent ground
based power objects. What is marquee about this architecture is that the infrastructure contained
within the NPSS syntax is the same for airbreathing, rocket and ground based power objects.
While the NASA Glenn led team came together to define what a common set of airbreathing,
rocket and ground based power objects are and defined their numeric behavior, this does not
mean that the objects' behavior and characteristics cannot be changed on demand. On the
contrary, the ability to change or extend the objects behavior is central to the use of the object-
oriented paradigm. The objects provided can be used as they are or can be changed based upon
appropriate need. Additionally, the developer is assured that the object has been tested and
proven to be accurate. So, any abnormal behavior is due solely to the new features just
introduced by the developer. The basic objects used within the NPSS Architecture for 0
Dimensional and 1 Dimensional analysis are:

-Elements
-Primary building blocks connected together via Ports
-Perform high-level calculations

oSubelements
-Interchangeable secondary building blocks that plug into Elements or other Subelements
-Perform detailed calculations
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-Flow Stations
-Responsible for thermodynamic and continuity calculations
-Access the thermodynamic packages

-Ports
-Used to connect Elements together
-Five types (Mechanical, Fluid, Fuel, Thermal, Data)
-Directional in nature (i.e., outputs connect to inputs)

-Tables
-Organized set of numbers that relate n-dimensional inputs to one or more outputs
-Support linear and second or third order LaGrange interpolation
-Support fixed value end-points or extrapolation (linear/2nd/3rd order LaGrange)
-May be used at any location a function is called and vice-versa

Of particular note, in this object definition, is that there isn't a reference to anything related to
propulsion. The NPSS Architecture's object structure, as defined, has allowed its general usage
amongst airbreathing, rocket, fuel cell and ground based power propulsion by the writing of the
appropriate functional objects. The author believes there are more applications to come.

Zooming, Code Coupling
In order to recover the wealth of investment in current FORTRAN, C, or other codes, NPSS has
adopted and developed a Common Object Request Broker Architecture (CORBA) interface to
make it appear as though these codes are actually C++ objects within the architecture. While
NPSS cannot gain complete control over these codes, it does provide three common procedures
for integration. These procedures are currently GET a variable, SET a variable, and EXECUTE
and are available no matter what the particular focus of the code you are accessing or in NPSS
terms "zooming" to. The zooming infrastructure has been successfully demonstrated between
an NPSS turbofan model and a 1 Dimensional high-pressure compressor code as pictorially
represented by figure 4. A similar zooming accomplishment has also been completed between
an NPSS Expander Cycle Engine model and a 1 Dimensional Pump code called PUMPA.
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Distributed, Parallel Computing
The basic internal communication scheme used by the NPSS Architecture for moving data across
address spaces and separate machines is through its CORBA interface. This is a point-to-point
concept of distributed computing and coupling of codes. Leveraging CORBA and its associated
Security (CORBASec) software has proven quite useful. From a parallel processing sense, the
NPSS Architecture has adopted the NASA Ames' Grid Computing software called GLOBUS.
The GLOBUS software can be thought of as a scheduler of schedulers since it is 'aware' of
scheduling software such as Load Sharing Facility (LSF,Platform Computing), Portable Batch
System (PBS,NASA Ames), Load Leveler (IBM). The NPSS Architecture makes an
assumption that any 3 Dimensional Computational Fluid Dynamics (CFD) code, structures codes
that will be integrated into an NPSS Simulation, already uses one of the above schedulers as well
as a particular message-passing library such as Parallel Virtual Machine (PVM), Message
Passing Interface (MPI) or some derivative of these. For NPSS' needs, the Grid Computing
software GLOBUS, needed to be aware of CORBA based simulations in the same way that it is
aware of LSF, or PVM based simulations. The NPSS team has developed a CORBA interface to
the GLOBUS services to support the NPSS Architecture. NPSS' goal has been to deploy
complex propulsion simulations that can be solved in an overnight timeframe in less than fifteen
hours on cost effective computing platforms. The corresponding Architecture goal is to deploy
these subject simulations on any computing cluster with minimal to no changes to the codes.

Coupling of Codes & Geometry Application Program Interface (API)
In developing the appropriate objects to support code coupling both from a single discipline and
multi-discipline perspective, a prototyping activity was set forth through a contract. The contract
specified to prototype the needed objects to couple a 3 Dimensional structures code with a 3
Dimensional fluids code and thereby provide guidance to a design that would encompass most of
the objects needed to support coupling of these codes. Once the NPSS project understood what
made sense to do, the team could then begin the formal development of the C++ objects and
make this part of the NPSS Architecture. While this work is continuing, current objects include:
single precision variable object, structured grid object, structured interface object, meta variable
object, FORTRAN character object, FORTRAN callable API, and a CORBA Object called
ForeignElement.

The NPSS Architecture needed a common geometry API that interfaced to the current suite of
commercial CAD vendors. It was already known that differing 3 Dimensional codes acquired
their respective geometry in different ways which introduced the potential for errors in the
analysis as the geometry was not interpreted the same way by all authors of codes. To address
this issue, an activity was started with Massachusettes Institute of Technology (MIT) to create a
common interface for reading geometry from Unigraphics, ProE, CATIA as these represented
the most common CAD systems within the propulsion community NPSS worked with. The
result of this work is a library/API called CAPRI. If the code developer adopts the CAPRI API
then geometry from UG, ProE, CATIA and other CAD systems can be read directly. Work is
ongoing to implement the Write function. No status is provided here on the Write function.

Computing Layer
The High Performance Computing and Communication Program that funded NPSS had as one of
its goals the development of massively parallel computers with high speed networks. Knowing
this and realizing that early computing platforms of this type would be volitale, the NPSS
Arhitecture was designed to 'leap-frog' this computing technology with no or minimal penalty to
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the NPSS applications. Where it was necessary for an application to port to an architecture,
NPSS intended to use CORBA to reach that application. The developers of the NPSS
Architecture wanted minimal proprietary computing presence so as to be able to jump from one
parallel or distributed computing platform as needed. The thought of porting codes to particular
architectures and then port them again all the while re-validating these codes was to be avoided.

NASA Glenn's participation in the development of parallel computers and networks focused on
cost effective clusters. Originally, a thirty-two node cluster of IBM 560's with multiple
networks was assembled from commercially available UNIX machines. These systems were
ugraded to IBM 590's but never grew beyond the original 32 nodes. Following this cluster came
a 128 node Pentium PC cluster comprised of 64 dual processor Pentium 400 Mhz systems
running LINUX. Both these systems were batch oriented with the resources controlled by
Platform Computing's Load Sharing Facility (LSF). A partnership arose between NASA Glenn,
Platform Computing and a commerical propulsion company to support parallel applications
within LSF and to develop a multi-cluster capability. Both these features exist within LSF today.
Currently, the NPSS project is moving to adopt the GLOBUS software that can co-exist with
LSF and has support for scheduling applications built on differing batch schedulers such as the
Portable Batch Scheduler (PBS).

Software Engineering Principles
NPSS made an assumption that in order to see its Architecture and code used within the US
Industry, adherence to an identifiable and recognizable software development process was
mandatory. Even within a research center, software engineering principles have a place. In
many research efforts, software engineering practices are a 'post development' activity. Many
developers always seem to have time to go back and fix what they didn't have time to design for
or around from the beginning. This was not the case with NPSS. From the start, software
development plans, configuration management plans, and verification and validation plans and
design plans were developed and used. At a minimum, any software development effort should
have configuration management and some form of verification and validation at the subsystem
and full system level. Without these phases, research codes never become anything but single
user research codes. Any development effort sponsored by the AVT should include a presence
of software engineering practices as appropriate for this community.

Along with a sophisticated yet manageable software development process, NPSS adopted an
incremental release process by which bug fixes and urgently needed enhancements found their
way into smaller or incremental releases rather than waiting for full releases of the software.
Regression testing and documentation are still maintained within this incremental release process
and in fact are more manageable.

Benefits to Date of NPSS
Early indicators on the benefits of using NPSS reveal a 55% reduction in the time to perform
engine system simulation throughout the product life cycle. Additionally, expectations include a
50% improvement in business processes with partners and customers.
From zooming, a reduction factor of 10 was achieved by using the NPSS architecture to integrate
high-fidelity compressor code into a system model. What normally took two days was achieved
in two hours making a simulation do able whereas before it was possible but not practical.
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Summary & Appropriateness to AVT
The words used in the theme of this AVT meeting are very similar to the words used in the goals
and approach in the development of NPSS. The AVT theme states, "The defense of NATO
requires a new paradigm in the development and deployment...", " essential to achieving the
cost and time reductions needed to field new and improved...". NPSS' goal is to reduce time
and cost in development of new propulsion systems while increasing confidence and reducing
risk in achieving a final design. The NPSS Architecture emerged to impact airbreathing
propulsion in the ways mentioned above. However, soon after its first incremental release,
NPSS' potential use to impact space propulsion and ground based power also was realized. The
NPSS architecture was re-used to model rockets, ground based power systems and even fuel
cells by populating only its object layer with the behavior needed for space propulsion, ground
based power and fuel cells. The remaining architecture was reused. The process by which
NPSS was built is noteworthy. Designing a system that combines a production phase with
prototyping and deployed on an incremental release schedule, provides for early access to fixes
and new features that ultimately lead to the stated goals of reducing risk and reducing the time to
final design. It is the opinion of the author that similar gains to AVT are available in building
Affordable Weapons systems for NATO as are now being realized within NPSS' propulsion and
power community.
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